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Abstract. We present a procedure in which known solutions to reflection equations for
interaction-round-a-face lattice models are used to construct new solutions. The procedure
is particularly well suited to models which have a known fusion hierarchy and which are based
on graphs containing a node of valency 1. Among such models are the Andrews–Baxter–
Forrester models, for which we construct reflection equation solutions for fixed and free boundary
conditions.

1. Introduction

Boundary weights which satisfy reflection equations are important in the study of solvable
interaction-round-a-face (IRF) lattice models with non-periodic boundary conditions [1–11].
More specifically, such boundary weights lead to families of commuting transfer matrices
and hence integrability. In [1, 3, 8–10] boundary weights for particular models were obtained
by directly solving the IRF reflection equations, while in [4] they were obtained using
intertwiners together with known boundary weights for a related vertex model.

Here we present a procedure in which known boundary weights for an IRF model—
together with auxiliary face weights, generally obtained from a fusion hierarchy—are used
to construct new boundary weights for that model. This procedure takes two forms, one
which leads to weights for fixed boundary conditions and the other which leads to weights
for free boundary conditions. In each case, the resulting boundary weights contain an
arbitrary parameter.

Our procedure is particularly effective for models, such as the Andrews–Baxter–
Forrester (ABF) models [12], which are based on graphs containing a node of valency
1, since there then exist trivial weights which can be used as the known starting weights. In
this paper, we apply our procedure to the ABF models and obtain weights for fixed boundary
conditions, which match those of [1], as well as weights for free boundary conditions.

2. General procedure

2.1. Motivation

We begin with a brief outline of the motivation for our procedure. Using the techniques
of [1], it can be seen that families of commuting transfer matrices with non-periodic
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boundary conditions can be obtained if there exist face and boundary weights,W and
B, which satisfy the Yang–Baxter equation, an inversion relation, and a reflection equation
of the form∑
f,g0...gn
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)
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(2.1)

whereµ andn are fixed, andu andv are arbitrary values of the spectral parameter.
It can be further observed that ifB satisfies (2.1) forn = 0, thenB ′ defined by

B ′
(
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) ]
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(2.2)

satisfies (2.1) forn > 0, whereξ1 . . . ξn are fixed inhomogeneities.
Finally, it can be seen that in certain cases the internal spins inB ′ can be eliminated

using fusion projection operators to give boundary weightsB ′′ which are different from
B, but which again satisfy (2.1) forn = 0. This assumes thatB has the form

B

(
c

b

a

∣∣∣∣u)
= B̄(c a |u)δab, and that the inhomogeneities are given byξj = ξ − (n − j)λ,

whereξ is arbitrary andλ is the crossing parameter.

2.2. Adjacency condition and face weights

We now proceed to a detailed presentation of our procedure. We are considering an IRF
model on a square lattice, and we assume that there are restrictions on the spins allowed on
any adjacent lattice sites, as specified by an adjacency matrix

Aab =
{

0 spinsa andb may not be adjacent

1 spinsa andb may be adjacent.

For such models, we associate a Boltzmann weightW with each set of spinsa, b, c and
d that are allowed to be adjacent around a face, i.e. for whichAabAbcAcdAda = 1. These
weights are denoted

W

(
d c

a b

∣∣∣∣u)
=

@
@

@
@�

�

�
�

a

b

c

d

u (2.3)

whereu is the spectral parameter.
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2.3. Fixed boundary conditions

We now consider a boundary containing a fixed spinā. In this case we associate a boundary
weight with each spina which is allowed to be adjacent tōa,

B̄(a ā |u) =
@

@

�
�

ā

a

ā

u . (2.4)

Such boundary weights generally lead only to quasi-fixed boundary conditions, since
althoughā is fixed, there is still a weighted sum over every spin adjacent toā. However,
there will be genuine fixed boundary conditions at any value of the spectral parameter for
which only one of the boundary weights is non-zero.

The boundary weights (2.4), together with the face weights (2.3), are expected to satisfy
the fixed-boundary reflection equations forā. There is one such equation for each set of
spinsb, c andd satisfyingAābAbcAcdAdā = 1,

∑
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Here,µ is a fixed parameter and the sums are over all spinse satisfyingAāeAec = 1. We
note that if the face weights satisfy the symmetry

W

(
d c

a b

∣∣∣∣u)
= W

(
b c

a d

∣∣∣∣u)
(2.6)

then (2.5) is automatically satisfied wheneverb = d. Furthermore, in the case in which
there is only one spina allowed to be adjacent tōa, i.e. ā has a valency of 1, we must
haveb = d = e = a in (2.5) implying that the equation is always satisfied, that the single
boundary weightB̄(a ā |u) may be assigned to any function ofu, and that we have genuine
fixed boundary conditions for allu.
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2.4. Free boundary conditions

For the case of free boundary conditions, we associate a boundary weight with each set of
spinsa, b andc satisfyingAabAbc = 1,

B
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c

a

∣∣∣∣u)
=
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�
�
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b

c

u . (2.7)

Such boundary weights generally lead only to quasi-free boundary conditions, in the sense
that there is a weighted sum over the boundary spins. However, there will be genuine free
boundary conditions at any value of the spectral parameter for which all of the boundary
weights are equal and non-zero.

The boundary weights (2.7), together with the face weights (2.3), are expected to satisfy
the free-boundary reflection equations. There is one such equation for each set of spinsa,
b, c, d ande satisfyingAabAbcAcdAde = 1,∑
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Here, the sum on the left-hand side is over all spinsf andg satisfyingAaf Acf AfgAgd = 1
and that on the right-hand side is over all spinsf andg satisfyingAef Acf AfgAgb = 1. We
note that (2.5) can be regarded as a special case of (2.8) for boundary weights of the form

B

(
b

c

a

∣∣∣∣u)
= B̄(b ā |u)δaāδcā.

2.5. Construction of new boundary weights

Our construction of new boundary weights requires that there exist an auxiliary adjacency
matrix Ā and, for each set of spinsa, b, c andd satisfyingĀabAbcĀcdAda = 1, an auxiliary
face weight

W̄

(
d c

a b

∣∣∣∣u)
=

a b

cd

u . (2.9)
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These weights, together with the fundamental face weights (2.3), are assumed to satisfy the
auxiliary Yang–Baxter equations. There is one such equation for each set of spinsa, b, c,
d, e andf satisfyingAabĀbcAcdAdeĀef Af a = 1,∑

g
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Here, the sum on the left-hand side is over all spinsg satisfyingAbgAfgĀgd = 1 and that
on the right-hand side is over all spinsg satisfyingĀagAgcAge = 1.

In practice, such auxiliary face weights can often be constructed from a row
of fundamental face weights with appropriate inhomogeneities, using fusion projection
operators to eliminate internal spins.

Our construction of new boundary weights takes two forms. In the first form, we obtain
new weights for a boundary with fixed spin̄a using known weights for a boundary with
fixed spin b̄, where we assume that, with respect toĀ, ā is the only spin allowed to be
adjacent tob̄. The new weights depend on an arbitrary parameterχ̄ and, for each spina
allowed to be adjacent tōa, are defined as

B̄ ′(a ā |u) =
∑

b

W̄

(
a b

ā b̄

∣∣∣∣u + χ̄

)
W̄

(
ā b̄
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)
B̄(b b̄ |u) (2.11)
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ā

b
•

. . . . .

. . . . .

where the sum is over all spinsb satisfying ĀabAbb̄ = 1. We note that we suppress the
dependence of these weights on the spinb̄ and the parameter̄χ . It is straightforward to
show that the new weights (2.11) satisfy the fixed-boundary reflection equations forā, using
the assumptions that the known weights satisfy the fixed-boundary reflection equations for
b̄, that the auxiliary face weights satisfy (2.10), and thatb̄ has valency 1 with respect tōA.

In the second form of our construction of new boundary weights, we obtain certain
weights for free boundary conditions using known weights for a boundary with fixed spin
ā. The new weights depend on an arbitrary parameterχ and, for each set of spinsa, b and
c satisfyingĀāaAabAbcĀcā = 1, are defined as

B

(
b

c

a

∣∣∣∣u)
=

∑
d

W̄

(
b d

a ā

∣∣∣∣u + χ

)
W̄

(
c ā

b d

∣∣∣∣µ − u + χ

)
B̄(d ā |u) (2.12)
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where the sum is over all spinsd satisfyingĀbdAdā = 1. Again we suppress the dependence
of these weights on the spin̄a and the parameterχ . The new weights (2.12) satisfy the
free-boundary reflection equations for each set of spinsa, b, c, d and e in (2.8) which
satisfy ĀāaAabAbcAcdAdeĀeā = 1. This follows straightforwardly from the assumptions
that the known weights satisfy the fixed-boundary reflection equations forā, and that the
auxiliary face weights satisfy (2.10).

3. ABF models

3.1. Adjacency condition and face weights

We now consider the Andrews–Baxter–Forrester (ABF) models [12]. There is one such
model for each integerL > 3, with the spinsa in this model taking the values

a ∈ {1, 2, . . . , L}. (3.1)

The adjacency matrix is defined by the condition thatAab = 1 if and only if

|a − b| = 1. (3.2)

The face weights are given by

W

(
a ± 1 a

a a ∓ 1

∣∣∣∣u)
= θ(λ − u)

θ(λ)

W

(
a a ± 1

a ∓ 1 a

∣∣∣∣u)
=

√
θ((a − 1)λ) θ((a + 1)λ)

θ(aλ)2

θ(u)

θ(λ)
(3.3)

W

(
a a ± 1

a ± 1 a

∣∣∣∣u)
= θ(aλ ± u)

θ(aλ)

whereθ is the elliptic theta-1 function of fixed nome and

λ = π

L + 1
(3.4)

is the crossing parameter. We note that when constructing boundary weights it will be
convenient to make the choice

µ = λ. (3.5)

For the ABF models, an auxiliary adjacency matrix and auxiliary face weights which
satisfy (2.10) are provided by the leveln fused adjacency matrix and then by 1 fused
face weights [13–15]

Ā = An W = Wn,1 (3.6)

where

n ∈ {0, 1, . . . , L − 1}. (3.7)

The leveln fused adjacency matrix is defined by the condition thatAn
ab = 1 if and only if

a − b ∈ {−n, −n + 2, . . . , n − 2, n} (3.8)
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and

a + b ∈ {n + 2, n + 4, . . . , 2L − n − 2, 2L − n}. (3.9)

We note thatA1 = A. The n by 1 fused face weights are defined in terms of rows of
n fundamental face weights (3.3) and, after appropriate normalization and symmetrization,
are given by

Wn,1

(
d c

a b

∣∣∣∣u)
(3.10)

=



εb εd

√
θ((a + b ∓ n)λ/2)θ((c + d ± n)λ/2)

θ(bλ)θ(dλ)

×θ(u − (n ± (a − b))λ/2)

θ(λ)
c = b ± 1, d = a ± 1

εb εd

√
θ((n ∓ (a − b))λ/2)θ((n ± (d − c))λ/2)

θ(bλ)θ(dλ)

×θ((a + b ± n)λ/2 ∓ u)

θ(λ)
c = b ∓ 1, d = a ± 1

whereεa are factors whose required properties are

(εa)
2 = 1 εaεa+2 = −1. (3.11)

We note that the fused weights (3.10) reduce to (3.3) forn = 1.

3.2. Weights for fixed boundary conditions

Since, for the ABF models, the spin 1 has valency 1 with respect toA, and the face weights
satisfy the symmetry (2.6), the boundary weightB̄(2 1 |u) can be set to an arbitrary function
of u. Furthermore, it follows from (3.8) and (3.9) that the spin 1 has valency 1 with respect
to any Aā−1, the only allowed neighbour being the spinā. It is therefore possible to
construct new weights for a boundary with fixed spinā using an arbitrary weight for a
boundary with fixed spin 1. Accordingly, we apply (2.11) with̄A = Aā−1, W = Wā−1,1,
b̄ = 1, µ = λ, χ̄ = −λ − ξ̄ , andB̄(2 1|u) = ε1 ε2 εā εā−1

√
θ(2λ)/θ(λ) g(u), which gives

B̄ ′(ā ± 1 ā|u) = g(u)

√
θ((ā ± 1)λ)

θ(āλ)

θ(u ± ξ̄ ) θ(u ∓ āλ ∓ ξ̄ )

θ(λ)2
(3.12)

where ξ̄ is an arbitrary constant andg is an arbitrary function. It can be seen that these
weights exactly match those obtained in [1] by directly solving the reflection equations, and
that there exist values ofu, such asu = ±ξ̄ , at which we have genuine fixed boundary
conditions.

3.3. Weights for free boundary conditions

We now consider the construction of ABF weights for free boundary conditions using (2.12)

together with (3.6) and (3.12). We shall associate with any ABF weightB

(
b

c

a

∣∣∣∣u)
either

odd or even parity, according to the parity ofb. Due to (3.2), each free-boundary reflection
equation (2.8) contains boundary weights all with the same parity. Similarly, due to (3.8)
and (3.9), (2.12) generates boundary weights all with the same parity. The requirement
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in (2.12) that we haveAn
aāA

n
cā = 1 also implies that, in general, there might not be a weight

B

(
b

c

a

∣∣∣∣u)
generated for eachb of the appropriate parity. However, by examining (3.8)

and (3.9), we find that the values

(n, ā) =
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2
,
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2

)
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L

2
,
L + 2

2

)
; L even, weights even(
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2
,
L + 2

2

)
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L
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,
L

2

)
; L even, weights odd(

L − 1

2
,
L + 1

2

)
; L odd, weights even(

L − 3

2
,
L + 1

2

)
,

(
L − 1

2
,
L − 1

2

)
,(

L − 1

2
,
L + 3

2

)
or

(
L + 1

2
,
L + 1

2

)
; L odd, weights odd

(3.13)

do generate a full set of boundary weights of a given parity. We now apply (2.12) with
µ = λ, χ = ξ + (n − 1)λ/2, g(u) 7→ εā εā−1 g(u), and ξ̄ 7→ ξ̄ − āλ/2, which gives

B

(
a

a ± 1
a ∓ 1

∣∣∣∣u)
= g(u)

√
θ(aλ)

θ((a ± 1)λ)

×{θ((n + 1 − a + ā)λ/2)θ((n + 1 + a − ā)λ/2)θ((a + ā − n − 1)λ/2)

×θ((a + ā + n + 1)λ/2)[θ(aλ)θ(λ)]−2}1/2

×θ(aλ/2 − ξ̄ ∓ ξ)θ(aλ/2 + ξ̄ ∓ ξ)

θ(λ)2

θ(2u)

θ(λ)
(3.14)

B

(
a

a ± 1
a ± 1

∣∣∣∣ ± u

)
= g(u)

√
θ(aλ)

θ((a ± 1)λ)
{θ((a + ā − n − 1)λ/2)θ((a + ā + n + 1)λ/2)

×θ(u + āλ/2 − ξ̄ )θ(u + āλ/2 + ξ̄ )θ(u + aλ − ā/2 − ξ)

×θ(u + (a − ā)λ/2 + ξ)

−θ((a − ā − n − 1)λ/2)θ((a − ā + n + 1)λ/2)θ(u − āλ/2 − ξ̄ )

×θ(u − āλ/2 + ξ̄ )θ(u + (a + ā)λ/2 − ξ)θ(u + (a + ā)λ/2 + ξ)}
×[θ(aλ)θ(āλ)θ(λ)4]−1. (3.15)

Here, the two terms which led to (3.14) were combined using a standard elliptic identity,
and a common factorεa εa−1 in (3.14) and (3.15) was eliminated since, for a givenā, the
allowed values ofa must all have the same parity implying that this factor always produces
the same sign.

4. Discussion

We have presented a general procedure for obtaining boundary weights for IRF models
and have applied this to the ABF models. Our method should be useful for determining
classes of IRF models for which solutions of the reflection equations exist and contain
arbitrary parameters. For example, our method implies the existence of such solutions for
the standardA–D–E models, of which the ABF models form theA series, since these are
all based on graphs containing a node of valency 1 and have known fusion hierarchies.
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However, we note that for theD andE series, the fused weights depend on certain internal
spins so that (2.10)–(2.12) need to be generalized to include these.

In a future publication, we shall outline the relationship between the ABF weights for
free boundary conditions found here and those obtained by directly solving the reflection
equations or by using intertwiners. We also hope to show that these weights can be used to
obtain genuine free boundary conditions at particular values of the spectral parameter and
we hope to be able to show that the associated transfer matrices satisfy functional equations
with the same form as in the case of fixed and periodic boundary conditions.
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